Got Sleep? Consequences of Sleep Deprivation

Mary H. Wagner, MD Associate Professor Diplomate in Sleep Medicine, American Board of Pediatrics Diplomate, American Board of Sleep Medicine

Stanford Sleepiness Scale

Rate your level of alertness

Feeling active, vital, alert or wide awake	1
Functioning at a high level, not at peak, able to concentrate	2
Awake but relaxed; responsive but not fully alert	3
Somewhat foggy, let down	4
Foggy; losing interest in remaining awake; slowed down	5
Sleepy, woozy, fighting sleep; prefer to lie down	6
No longer fighting sleep, sleep onset soon; having dream like thoughts	7
Asleep	X

Effects of Sleep Deprivation

- Extent of the problem
- Safety issues
- Health effects
- Cognitive impairment

Normal Sleep Requirement

- Adults 7-8 hours
- Varies with age in children
 - Newborns 16-20 hours
 - Infants 13-15 hours
 - Toddlers 12 hours
 - Preschool 11-12 hours
 - School age 10-11 hours
 - Adolescents 9 hours

Sleep Deprivation/Loss

- Major symptom is excessive daytime sleepiness (EDS)
- Prevalent problem, increasing with age
- At least 18% adults report insufficient sleep
- Increasing percentage of adults sleeping less than 6 hours/night over past 20 years

Sleep Deprivation/Loss

- CDC report 2005, slept < 6 hours/night
- Changes over 20 year period
- Men and women age 30-44 years
 Men 个26% to 32%, women 个22% to 29%
- Men and women age 45-64 years
 Men 个23% to 33%, women 个23% to 32%
- Adolescents –need 9+ hours of sleep

- 26% slept < 6.5 hours on school night

National Sleep Foundation 2006 *Sleep in America* Poll

- 20% of adolescents get 9 hours sleep/school nights
- Average 6th grader sleeps 8.4 hours on school nights
- > 50% of adolescents report feeling tired or sleepy during the day
- 9 out of 10 parents believe their adolescent is getting enough sleep at least a few nights/week=awareness gap

National Sleep Foundation 2006 *Sleep in America* Poll

- 25% of HS students fall asleep once/week in class
- 22% fall asleep doing homework
- 14% arrive late or miss school
- Teens with 9+ hours of sleep report more positive mood
- 15% of 10th to 12th grader drivers drive *drowsy* at least once a week
- 14% of adults drive *drowsy* once a week

- Serious accidents after insufficient sleep
- Exxon Valdez
 - Extensive oil spill into Prince William Sound
 - Environmental damages, \$2 billion clean-up
 - Third mate had slept only 6 hours in previous
 48→→severely sleep deprived

- Space shuttle Challenger
- Presidential commission

- Key launch managers slept only 2 hours night before and on duty at 1 am
- Critical management decisions affected by excessive work hours

- NHTSA- 100,000 accidents are caused by driver fatigue with 1500 deaths 71,000 injured
- Increased risk of vehicular crashes
 - Those with untreated OSA
 - Persons with < 6 hours sleep/night</p>
 - 1 in 5 serious car crashes related to sleepiness
- Increased accident frequency at times of increased sleep propensity

Motor Vehicle Crashes

- 2003 New Jersey law criminalized driving while drowsy
- "Maggies Law" for Maggie McDonnell killed in a head on collision by driver who had not slept in 30 hours
- NTSB- 57% of 4800 fatal crashes involving trucks "fatigue" related
 - Study by dePinho et al
 - 300 truck drivers, sleep time 5.6 + 1.3 hours
 - Poor sleep in 46%, 46% ESS > 10
 - Positive correlation between ESS and previous accidents

Sleepy Drivers-What Can We Do?

- Adolescent Sleep, School Start Times, and Teen Motor Vehicle Crashes, JCSM 2008, Danner and Phillips
- Comparison of sleep duration, MVA in the 17 and 18 yo year before and after school start times delayed one hour in 1 county
- Significant increase in avg sleep duration

 In all groups (p <.001)
 - 30 minutes in HS seniors

Adolescent Sleep, School Start Times, and Teen Motor Vehicle Crashes, JCSM 2008

- Increase in those getting 8+ hours of sleep
 35.7% to 50% (p < .01)
- Weekend catch up sleep decreased
 - From 1.9 to 1.1 hours (p < 0.001)
- Decrease in auto crashes after stable rate
 - For 17-18 yo licensed drivers county vs state
 - Only for county where start times delayed
 - Dropped by 16.5% while rest of state increased by 7.8% (p < .01)

- Libby Zion Case-1984
- 19 y.o. college student died at NYC hospital of undiagnosed treatable infection
- Grand jury ruled death
 - Due to undiagnosed but treatable infection
 - Inadequate resident supervision and fatigue
 - New York state law-reduce resident work hours
 - Other states, ACGME followed

- Resident work hours and medical errors
- Sleep deprived surgical residents
 - Up to 2X number of surgical errors in surgery simulation-Grantcharov et al, Eastridge et al
- ACGME survey of 5600 medical residents
 - Residents working > 80 hours were 50% more
 likely to make a significant medical error-Baldwin and
 Daughtery

- Harvard Work Hours, Health and Safety Study
 - Traditional schedule ~ 80 hours/week
 - Intervention schedule
 - No 24 hour shifts
 - <u><</u> 63 hours/week
 - Intensive care unit
 - Most intense service unit
 - Highest error rate

Harvard Work Hours, H & S Study

- Intervention schedule
- Increased resident sleep time by 6 hours
- Rate of "attentional" failures cut by half
- Comparison of errors
 - Interns randomized to the two schedules
 - Direct observation of two physicians blinded to the schedule

Harvard Work Hours, H & S Study

Variable	Traditional	Intervention	P value
Serious medical errors	176	91	<0.001
Nonintercepted serious errors	58	26	<0.001
Intercepted serious errors	91	50	0.02
Medication	129	75	0.03
Diagnostic	24	3	<0.001

- Ayas et al
- Interns sustaining percutaneous injuries
 - After extended work day vs. non-extended
 - 2737 interns surveyed
- Increased rate after extended work hours
 - Odds ratio 1.61

Health Effects

- Obesity
- Diabetes/impaired glucose tolerance
- Cardiovascular disease/hypertension
- Inflammatory/Immune systems
- Anxiety/depression

- Dose response relationship between sleep loss and obesity for sleep time <7 hours
- Shorter sleep time, greater BMI
- 13 year prospective cohort of 500 adults
 - By age 27 years, those with < 6 hours sleep</p>
 - -7.5 x more likely to have \uparrow BMI
 - Controlled for exercise, family hx, demographics (Hasler, et al)

- Relationship of sleep duration and BMI in 1000 adults Taheri et al
- U-shaped curve
- Lowest BMI in those who slept 7.7 hours
- Higher BMI for SPT longer and shorter

BMI VS SLEEP PERIOD TIME

Taheri et al

- Hairston, et al found increased visceral and SQ adipose tissue by CT scan in those < 40 years of age sleeping < 5 hours vs. 6-7 hours
 - BMI, Abd CT at 5 year intervals
 - Adjusted for age, gender, race, baseline, activity, calorie intake, smoking status and education

- Physiologic mechanisms behind obesity & \downarrow TST
 - Many authors have "weighed in" on this
- Decreased sleep time
 - Lower leptin levels-appetite suppression
 - Higher ghrelin levels-appetite stimulation
 - Increased opportunity to eat
 - Hyperphagia in sleep deprived animals
 - Increased intake of high fat/carbohydrate foods
 - Fatigue $\rightarrow \rightarrow$ decreased physical activity
 - Altered thermo-regulation

- Australian study in 6000 15 year olds
 - Males with < 8 hours of sleep 3.1 times greater chance of overweight compared with those with > 10 hours of sleep
- Knutson study in > 4000 17 year olds
 - Overweigh risk \uparrow 10% for each hour in sleep decrease
 - Only among boys
- Many studies suggest boys more susceptible than girls

Sleep Deprivation and Diabetes

• Sleep Heart Health Study

- Community based cohort, 1486 adults

- Those sleeping < 5 hours 2.5 x more likely to have diabetes compared to those sleeping 7-8 hours/night
- Sleeping 6 hours/night \rightarrow 1.7 x more likely
- Increase in impaired glucose tolerance in both groups

Sleep Deprivation and Diabetes

- Nurses Health Study
- Follow up over 10 years in 70,026 female nurses without diabetes
- Sleeping < 5 hours/night 1.57 odds ratio of developing diabetes, decreased to 1.18 when adjusted for BMI

Sleep Deprivation and Diabetes

- Spiegel et al examined experimental sleep restriction in 11 healthy males
- Slept 4 hours/night for 6 nights
- Glucose clearance 40% slower with sleep loss compared to after recovery

Sleep Deprivation and Hypertens

- National Health and Nutrition Examination Survey (NHANES I) group 1982-1992
- 4810 subjects
- Sleep duration < 5 hours
 - Increased risk of hypertension
 - 2.1 odds ratio in ages 32-59 years

systolic 140

DIASTOLIC

Sleep Deprivation and MI

- Nurses Health Study
- No coronary heart disease at baseline
- 10 year follow-up
- In those with < 5 hours sleep/night
 - Increased likihood fatal & non-fatal MI
 - Risk increased 45%
 - Adjusted for age, BMI, smoking, snoring
 - Increased risk if <a> 9 hours sleep/night as well

Sleep Deprivation and MI

- Epidemiologic study by Liu et al
- Two to three fold increase in cardiover events

- Average sleep < 5 hours/night</p>
- Chronic sleep deprivation of < 5 hours/night twice per week
- Proposed mechanism activation of inflammatory process(es) with sleep loss

Sleep Deprivation and Mortality

- Increase in age-specific mortality
- Kripke et al, Tamakoshi et al, Patel et al
- 83,000 to 1.1 million subjects
- Surveys about sleep duration, 6-14 year follow-up
- Increased deaths short and long sleepers compared to 7 hour sleepers
- Sleeping ≤ 5 hours→15% ↑mortality from all causes

Sleep Deprivation and Other Health Issues

- Spiegel et al examined chronic sleep restriction on antibody response
- 6 nights \downarrow sleep period to 4 hours
- Decreased antibody response to influenza vaccination by 50% (Compared to subjects with usual sleep duration)

Sleep Deprivation and Other Health Issues

- Decreased febrile response to endotoxin in sleep restriction reported by Balachandran et al
- Vgontzas et al found increased secretion of IL-6 and TNFα after 1 week of sleep restriction

Sleep Deprivation and Mood

- Adults with chronic sleep deprivation
 - \uparrow anxiety, depressive symptoms, distress and ETOH use
- Study of 2200 middle school students over 3 year period found sleep deprivation associated with ↑depressive symptoms, ↓ self esteem
- Study of 3000 adolescents, those with inadequate sleep had 个behavior problems, depressed mood, anxiety, ETOH use

eep Deprivation and Performance Deficits

- Involuntary micro sleeps
- Unstable attention of intensive performance tasks→↑errors of commission/omission
- Cognitive slowing in tasks with no time limit
- Increased cognitive errors with time limited tasks

Sleep Deprivation and Performance Deficits

- Decrease in short term memory recall
- Reduced learning of cognitive tasks
- Worsened performance with prolonged task duration
- Increased compensatory efforts

Working Memory Capacity is Decreased in Sleep-Deprived Internal Medicine Residents- Gohar, Adams, Gertner, et al.JCSM, 2009

- 39 residents completed study, Q 4 day call
 - Sleep questionnaire, sleep logs, actigraphy
 - Tests of WMC, math problems
 - Self rating of sleepiness
 - Comparison of call and non-call months

Working Memory Capacity is Decreased in Sleep-Deprived Internal Medicine Residents- Gohar, Adams, Gertner, et al.JCSM, 2009

- Average sleep times
 - Logs showed more hours than acitgraphy
 - Non call months stable sleep duration at 7.25 hours
 - On call months variable sleep duration mean+=6.39 h
 - Mean on call sleep 3.7 hours,
 - Mean sleep post call was 10.1 hours

Working Memory Capacity is Decreased in Sleep-Deprived Internal Medicine Residents- Gohar, Adams, Gertner, et al.JCSM, 2009

- - Lower WMC scores, more math errors
 - More accuracy and speed errors
 - Not specifically correlated with hours sleep
 - Ten residents "resistant" with better WMC scores on call months
- Full recovery of WMC didn't occur until 4th post call day
- No evaluation of impact on patient care

Sleep Deprivation and Performance Deficits

- Truck drivers randomized to 7 nights of sleep restriction-3,5,7,or 9 hours TIB
- 3 and 5 hour subjects
 - $-\downarrow$ performance across 7 days
 - \uparrow reaction time, lapses
- 7 hour subjects
 - $-\uparrow$ reaction time, no lapses

Sleep Deprivation and Performance Deficits

- 9 hour group
 - Stable performance
- No accumulation beyond 6 days

Sleep Deprivation and Performance Deficits

- Sleep restriction 4,6,8 for 14 nights
- Deficits worsened for entire period
- Compared to subjects with 4 days of total sleep deprivation
- Those in 4 and 6 hour groups had similar deficits to subjects awake for 24-48 hours
- Subjects unaware of deficits by self ratings

Gition

Sleep Deprivation and Performance Deficits

- Herscovitch examined subjective evaluation of sleepiness
- Stanford Sleepiness Scale ratings for 5 nights of sleep restriction
- Scores increased over the 5 nights
- Subjective ratings underestimated the extent of dysfunction

Ethanol and Sleep Loss: A "Dose" Comparison of Impairing Effects

Roehrs et al; Sleep2003;26(8):981-5.

- Comparison of ETOH intake and sleep restriction in 32 healthy volunteers
 - Sleep loss of 0, 2,4 6, 8 hours
 - ETOH doses 0,0.3, 0.6, 0.9 gm/kg
- Dose response
 - Decrease in sleep latency
 - Slowed reaction time
 - Poorer tracking
 - Reduced memory recall

Sedative Effects of Sleep Loss and ETOH

Sleep loss in hours	ETOH dose in g/kg	Number of beers	% Breath ETOH Concentration
8	2.16	10-11	0.19 %
6	1.07	7-8	0.10 %
4	1.0	5-6	0.095 %
2	0.5	2-3	0.045 %

Ethanol and Sleep Loss: A "Dose" Comparison of Impairing Effects Roehrs et al; Sleep2003;26(8):981-5.

- Sleep loss as potent as ETOH in impairing performance
- Sleep loss more potent in sedative effects
- Similar deficits in psychomotor tasks
- Williamson et al –similar findings
 - 17-19 hours without sleep
 - Performance similar to BAC 0.05%

Sleep Deprivation and Performance Deficits

- Killgore et al studied 34 healthy volunteers
- Iowa Gambling Task
 - Simulates real world decision making with element of uncertainty
- Baseline and after 49.5 hours sleep deprivation
 - Increased risk taking post sleep loss
 - Worsened as game progressed
 - More risks in older subjects

The Effects of 53 hours of Sleep Deprivation on Moral Judgment, Kilgore, Kilgore, Day, et al JCSM 2007

- 29 healthy volunteers, active military
- Ages 20-35 years, healthy, awake 53.5 h
- Compared responses pre and post
 - 60 practical dilemmas -moral and non-moral
 - To determine if course of action suggested was appropriate or inappropriate
- Sleep deprivation resulted in significantly longer response times to moral personal dilemmas but not other dilemmas

Sleep Deprivation and Performance Deficits

- Randazzo et al studied 16 children ages 10-14 years, with 11 and 5 hours TIB
- Sleep restricted group
 - Shortened sleep latency
 - Decreased verbal creativity
 - Decreased learning of abstract concepts
 - $-\downarrow$ higher cognitive functions
 - No difference in rote memory, less complex cognitive function

$$S(q) = -\frac{e^2\hbar^2 k_B T}{m^2 c} \sum_{m=-\infty}^{n=\infty} \oint k^2 \sin^2 \theta \left[\dots \right]$$

Sleep Deprivation and Performance Deficits

- Fallone et al studied teacher ratings in children with sleep restriction for 1 week
- 74 children ages 6-12 years, no history of behavior or academic problems
- Sleep restriction resulted in
 - Increased academic problems
 - Increased attention problems
 - No increase in hyperactivity score

Sleep Deprivation

- Safety issues
 - Traffic accidents, medical errors
 - Don't drive big oil tankers
- Health problems

- Diabetes, hypertension, MI, obesity, mortality
- Mood disorders
 - Depressive symptoms, anxiety
- Performance deficits
 - Sleepiness, ↓ psychomotor performance, ↓ higher cognitive function

Stanford Sleepiness Scale Rate your level of alertness

Feeling active, vital, alert or wide awake	1
Functioning at a high level, not at peak, able to concentrate	2
Awake but relaxed; responsive but not fully alert	3
Somewhat foggy, let down	4
Foggy; losing interest in remaining awake; slowed down	5
Sleepy, woozy, fighting sleep; prefer to lie down	6
No longer fighting sleep, sleep onset soon; having dream like thoughts	7
Asleep	X